Dual tree complex wavelet transform based denoising of optical microscopy images

نویسنده

  • Ufuk Bal
چکیده

Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Image Denoising in Dual-Tree Complex Wavelet Transform based on a Overlapping Group Shrinkage

This paper presents a computer based manipulating and analyzing a digital images. The proposed method is used wavelet transform, this transformation arrange orthogonal series of both imaginary and real values. In this paper we are proposes a two algorithms one is dual tree complex wavelet transforms (DTCWT), and second one is dual tree complex wavelet transform with orthogonal shift property th...

متن کامل

Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is ap...

متن کامل

Denoising of Images corrupted by Random noise using Complex Double Density Dual Tree Discrete Wavelet Transform

This paper presents removal of random noisenoise by complex double density dual tree discrete wavelet Transform. In general in images noise suppression is a particularly delicate and difficult task. A tradeoff between noise reduction and the preservation of actual image features has to be made in a way that enhances the relevant image content. The main properties of a good image denoising model...

متن کامل

Image Denoising by Soft Shrinkage in Adaptive Dual Tree Discrete Wavelet Packet Domain

Image Denoising has remained a fundamental problem in the field of image processing. It still remains a challenge for researchers because noise removal introduces artifacts and causes blurring of the images. In the existing system the signal denoising is performed using neighbouring wavelet coefficients. The standard discrete wavelet transform is not shift invariant due to decimation operation....

متن کامل

An Improvement of Steerable Pyramid Denoising Method

The use of wavelets in denoising, seems to be an advantage in representing well the details. However, the edges are not so well preserved. Total variation technique has advantages over simple denoising techniques such as linear smoothing or median filtering, which reduce noise, but at the same time smooth away edges to a greater or lesser degree. In this paper, an efficient denoising method bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012